martes, 2 de junio de 2009
PRÁCTICA 10: NEWTON TENÍA RAZÓN.
Una vez hecho todo esto se comienza poniendo una cantidad mínima de clips al coche para que empiece a moverse. A partir de ahí ya todo es tomar medidas del tiempo que tarda con cada clip que se añade y a distintas distancias. Antes no he dicho nada de que hay, digamos, una segunda fase. Consiste en ponerle al coche un pegote de plastilina para añadirle peso, y se realiza el mismo proceso que con el cohe sin plastilina, es decir, añadir la cantidad de clips minima necesaria para que el coche comience a moverse y añadir más clips.
15. Fuerza de rozamiento estática: esta actúa cuando el coche no lleva colgando la cantidad suficiente de clips, se hace fuerza pero no se modifica el estado, justo en la posición previa al movimiento.
Fuerza de rozamiento dinámica: esta actúa cuando el coche comienza a moverse con una cantidad de clips determinada.
16. Si la masa aumenta la fuerza neta aumenta de una forma proporcinal al aumento de la masa y la aceleración (si las condiciones no cambian) disminuye puesto que le costaría más moverse.
17. El rozamiento estático producido por el cambio de masa es directamente proporcional a ésta, y la fuerza aplicada que debe usarse para que comience a moverse, también.
18. Para que salga del reposo y darle una "velocidad inicial" y pasar de la Primera Ley de Newton (Principio de Inercia) a la Segunda Ley (Principio Fundamental)
19.
F= ma
Fap + Froz = ma
Equilibrio (momento antes de que el coche se mueva) --> Fap + Froz.est = 0
Fap: peso nº de clips. Froz.est = estática.
1 clip = 0.5 g
Para un coche con m = 31.3 g, el nº de clips para el equilibrio son 2.
Fap = 0.001kg · 9.8 m/s2 = 0.0098 N.
Froz.est = -0.0098 N.
Cuando el coche empiece a moverse:
Fap + Froz = ma
Pclips - Froz.din = ma
Por tanto
Fneta = Pclips - Froz.din = Mclip · g
domingo, 31 de mayo de 2009
ACTIVIDAD 5: GALILEO. LA CAÍDA LIBRE DE LOS CUERPOS.
Es posible, en efecto.
Para aumentar la gráfica, haced click en ella.
2.
En cada tramo de la gráfica obtenemos la velocidad media.
v (t) = incremento de y/incremento de t
Tramo 1: V1 = 0.095m/0.8s = 1.19 m/s
Tramo 2: V2 = 0.15m/0.8s = 1.88 m/s
Tramo 3: V3 = 0.22m/0.8s = 2.75 m/s
Tramo 4: V4 = 0.29m/0.8s = 3.63 m/s
Tramo 5: V5 = 0.35m/0.8s = 4.38 m/s
Podemos comprobar que, efectivamente, el movimiento que realiza la bola de acero es un MRUA; su velocidad aumenta progresivamente, siguiendo la aceleración constante de la fuerza de la gravedad.
3.
En esta gráfica se representa la velocidad de cada tramo en función del tiempo, siendo ésta la diferencia en el desplazamiento partida por la diferencia en el tiempo.
Si se desea ampliar la imagen, puede hacerse click en ella.
Respecto al tipo de movimiento descrito por la bola de acero en su caída, podemos afirmar que se trata de un movimiento rectilíneo uniformemente acelerado, MRUA, que comienza desde el reposo: por tanto, es una caída libre.
De acuerdo con nuestras expectativas, una caída libre debería aumentar su velocidad de acuerdo con la aceleración provista por la fuerza de la gravedad, y establecer una parábola en una gráfica. Ya que hemos comprobado que sucede así, definitivamente se halla de acuerdo con nuestras expectativas.
4. V^2+Vi=2aY
tramo 1: 1.19m/s=2a*0.09s
a=1.19m/0.18s^2=6.61m/s^2
tramo 2: 1.88m/s=2a*0.15s
a= 1.88m/0.39s^2=6.27m/s^2
tramo 3: 2.75m/s=2a*0.22s
a=2.75m/0.44s^2= 6.25m/s^2
tramo 4: 3.63m/s=2a*0.29s
a=3.63m/0.58s^2=6.26m/s^2
tramo 5: 4.38m/s=2a*0.35
4.38m/0.70s^2= 6.26m/s^2
si comparamos nuestro resultado con el de la gravedad... vemos una differencia deunos 3.72m/s^2. es algo curioso ya que deberia haber salido el mismo valor y ni se ha acercado.
5. h=gt^2 V=gt
tramo 1: h= 9.8*0.8^2=6.27m
v=9.8*o.8=7.84m/s
tramo 2, 3, 4 y 5: tanto la altura como la velocidad seria constante, en la altura en cada tramo se van sumando
tramo 2=12.54m tramo 3=18.81m tramo 4=25.08m, tramo 5=31.35m
siendo esto el modelo teorico
GRAFICAS DEL EJERCICIO ANTERIOR Y DE ESTE MISMO.
6. Como solo tenemos 5 tramos lo haremos en nuestro último tramo. (no lo hemos visto)
tramo 5:
domingo, 24 de mayo de 2009
LABORATORIO VIRTUAL DE DINÁMICA - PRÁCTICA ONLINE
En esta práctica, pues, no existe el error físico de cálculo que nos provee con datos mal tomados, mediciones erróneas y demás fallos que pueden desviar nuestros cálculos, tablas y demás. Esta es una práctica virtual, y por tanto un ejemplo completamente imposible y a la vez perfecto en cuanto a las leyes que cumple, que se distorsionan fuera de un entorno no virtual, eso sin contar nuestros propios fallos a la hora de realizar las prácticas cotidianas debido a nuestra condición de seres humanos, que trae consigo de forma inherente la falta de precisión, la falta de perfección que posee un ordenador.
LEYES DE NEWTON
1. Principio de la Inercia
Las gráficas A, B y C de las leyes de Newton nos permiten apreciar que, en ellas, la velocidad es constante, por lo que se trata de movimiento rectilíneo uniforme. La gráfica A no tiene ningún tipo de fuerza actuando sobre ella, y eso significa que su resultante es 0 y se encuentra en equilibrio. Así se cumple la primera ley de Newton, el principio de la inercia, y su velocidad inicial no varía. La gráfica B y la gráfica C ambas muestran cómo, aunque haya fuerzas actuando sobre los objetos, éstas tenen módulo igual pero sentido contrario, lo que quiere decir que estas fuerzas se contrarrestan, dando lugar a una situación en la que la resultante también es 0 y el equilibrio se mantiene.
2. Principio Fundamental de la Dinámica
Los experimentos que he llevado a cabo me han permitido obtener la conclusión de que la aceleración es inversamente proporcional a la masa; esto es, cuanto mayor sea la masa de un cuerpo, menor será la aceleración que obtenga si la fuerza que se le aplica es la misma; cuanto menor sea la masa, mayor la aceleración que consiga.
CUESTIONES
1.
Si sobre el cuerpo no actúa ninguna fuerza, la velocidad inicial que tenía se conservará. Esto obedece al Principio de la Inercia. De cualquier manera, mientras se cumpla esta ley, la velocidad permanecerá constante, y por tanto dependerá de la velocidad inicial con la que partiera el móvil.
2.
Si la fuerza actúa en el eje de las X positivamente, el móvil se acelerará de manera constante hacia la derecha, y viceversa. Aquí depende de si la fuerza que actúa lo hace de manera positiva (hacia la derecha) o negativa (hacia la izquierda).
3.
Puede sustituirse por dos fuerzas que, al ser sumadas, produzcan un vector idéntico en dirección, módulo y sentido al vector de la fuerza de la pregunta anterior, lo que puede lograrse de infinitas maneras diferentes, por ejemplo dos vectores de sentido contrario en el que uno sea de mayor módulo, o dos en el mismo sentido de módulo inferior al inicial.
4.
La aceleración negativa de un cuerpo quiere decir que, si el cuerpo contaba con una velocidad inicial positiva, se frenará y volverá a acelerar en sentido contrario, describiendo una parábola en el eje de las X; si contaba con una velocidad inicial igual a 0 (estaba en reposo), comenzará a moverse y a acelerarse hacia la izquierda; si su velocidad inicial era inferior a 0 (negativa), acelerará hacia la izquierda.
5.
Esta pregunta ya ha sido respondida en la gráfica del Principio Fundamental; la masa y la aceleración son inversamente proporcionales, por lo que una masa mayor disminuirá su aceleración, y una masa menor la aumentará.
6.
Esto nos indica que el móvil ha empezado a moverse desde una posición más a la izquierda que el origen de coordenadas, sea éste cual sea. Puede deberse a que una fuerza lo ha posicionado en un lugar distinto al sistema de referencia tomado por el observador o, simplemente, a que su posición incial está en ese lugar.
7.
La fuerza resultante es la suma de todas las fuerzas que actúan sobre un cuerpo. Ya que la fuerza y la aceleración son directamente proporcionales, la fuerza resultante siempre tendrá el mismo signo que la aceleración de un cuerpo.
8.
La velocidad, sin embargo, puede diferir en signo de la aceleración en algún momento del estudio. Si las condiciones iniciales de un cuerpo lo especifican, puede tener una velocidad inicial positiva y una aceleración negativa, aunque esta aceleración terminará, tarde o temprano, llevando a la velocidad a obtener el mismo signo que ella. Por tanto, dependiendo de la manera en la que se quiera responder a esta pregunta, hay dos formas de contestar: si vemos "tienen el mismo signo" queriendo decir que no hay ningún momento en el que puedan tener signos diferentes, entonces la respuesta es: No, pueden tener signos distintos. Si vemos "tienen el mismo signo" como queriendo decir que acabarán por tener el mismo signo, la respuesta es: Sí, cuando el tiempo tienda a infinito, la velocidad tenderá a tener el mismo signo que la aceleración.
9.
La única solución que puedo hallar a esta cuestión se encontraría si la velocidad fuera positiva, su aceleración negativa y su posición inicial superior a 0. En ese caso, el móvil frenaría su movimiento por completo al hallarse en los límites de nuestro campo de visión.
martes, 19 de mayo de 2009
PRÁCTICA8: LABORATORIO VIRTUAL DE DINÁMICA
Podeis visitralo aquí.
1)He practicado durante unos minutos para saber como se usa y que es exactamente lo que hay que hacer, después los prefesores nos presentaron unas experiencias para demostrar de lagun modo las Leyes de Newton. No os preocupeis porque voy a poneros las experiencias para que, como yo, podais comprobar las leyes.
2)Primera Ley de Newton. Principio de Inercia.
-Experiencia 1: Vinicial= 30m/s, Fderecha= 0N, Fizquierda= 0N
-Experiencia 2: Vinicial= 30m/s, Fderecha= 5N, Fizquierda= 5N
-Experiencia 3: Vinicial= 40m/s, Fderecha= 5N, Fizquierda= 5N
-Experiencia 4: Vinicial= 40m/s, Fderecha= 10N, Fizquierda= 10N
Fijate en los valores que adopta la velocidad ¿Qué conclusión sacas? yo saco que en todos los casos se representa un MRU (movimiento rectilineo y uniforme)
Pregunta: sobre un cuerpo actua una fuerza de 5N ¿Cómo conseguirás que el cuerpo se mueva a una velocidad constante de 30m/s? igualando con 5N de fuerza en el sentido contrario ¿Y para que lo haga con una velocidad de 40m/s? aquí yo entiendo que es una velocidad constante, lo único qe tiene que hacer, aparte de igualar los 5N, es empezar con esa velocidad.
3) Segunda Ley de Newton. Principio Fundamenal de la Dinámica.
- Efecto de la masa:
*experiencia 1: V0= 0m/s, Fderecha= 10N, m= 1kg
*experiencia 2: V0= 0m/s, Fderecha= 10N, m= 2kg
*experiencia 3: V0= 0m/s, Fderecha= 10N, m= 4kg
En todos los casos fijate en los valores que adopta la aceleración ¿Qué conclusión sacas? Yo saco que es un valor constante, es decir que es lo que aumenta cada segundo, estamos hablando de un MRUA (movimiento rectilineo uniformemente acelerado)
- F y a tienen la misma dirección y sentido:
*experiencia 4: V0= 30m/s, Fderecha= 6N, Fizquierda=10N, m= 1kg
*experiencia 5: V0= -30m/s, Fderecha= 6N, Fizquierda=10N, m= 1kg, S0= 150m
¿Qué concñusión extraes de los resultados? Es la misma experiencia pero en sentido contrario, bueno en realida lo que ocurre es que se ahorra en la segunda, la parte en el que la primera avanza hacia la derecha.
CUESTIONES
- Si sobre un cuerpo no actua ninguna fuerza ¿varía su velocidad? ¿ De que dependera que se meva con una u otra velocidad? En primer lugar su velocidad no varía para nada, y depende de principalmente de su masa, logicamente también de la velocidad inicial que le des.
- ¿Cómo se mueve un cuerpo sobre el que actúa una fuerza hacia la derecha?¿Hay una unica respuesta a esta pregunta? Respondiendo a la preimera pregunta, yo diría que de forma rectilinea yuniformemente acelerada, respecto a la segunda, sí que hay una solo respuesta ya que es indiferente como sea la fuerza.
- ¿ Es posible sustituir la fuerza de la pegunta anterior por una combinación de dos fuerzas que produzcan el mismo efecto? Sí claro que se puede, por que se produzca el mismo efecto yo entiendo que sean de igual modulo y dirección pero distinto sentido, entonces lo que ocurrirá es que el movimiento sería MRU.
- ¿Si un cuerpo se mueve con aceleración negativa esto implica que se mueve con movimiento uniformemente decelerado? En realidad no, porque ese movimiento no existe lo que si es verdad es que es una deceleración pero el movimiento sigue siendo MRUA
- ¿Cómo influye la masa en el movimiento de un cuerpo sometido a la acción de fuerzas? Pues... influye basicamente en la cantidad de espacio que recorre, ya que con las mismas fuerzas y la misma velocidad pero una masa ligera recorre más espacio que una movil con las mismas condiciones pero mayor masa.
- ¿Cual es el significado de un signo menos en los datos de distancia al origen? No se si lo voy a poder explicar bien, pero lo voy a intentar. Yo creo y afirmo según mis conocimientos que indica que empieza por detras del 0 en tu sistema de referencia.
- ¿Tienen siempre la fuerza resultante y la aceleración el mismo signo? Según las experiencias que hemos hecho y las que yo he hecho por mi cuenta sí siempre es el mismo signo.
- ¿Tinen siempre la velocidad y la aceleración el mismo signo? No, ya que si la velocidad tiene el signo positivo o negativo indica hacia donde se dirige el móvil y en la aceleración indica si acelera o decelera, por lo que no tienen nada que ver.
- ¿Existe una única solución para que la blolita llegue justamente al límite del visor que se representa con velocidad cero? No, existen infinitas solociones, tantas como combinaciones de fuerzas haya.
miércoles, 13 de mayo de 2009
Eratostenes: calcular el radio de la Tierra
- Este está en la página de Astronimia2009.es (Es realizado de la misma manera que como os lo he explicado, no lo puedo incrustar pero pongo un link directo): astronomia2009.es
- Este es de You Tube, es una especie de documental que cuenta como Eratóstenes midió el radio terrestre:
Ahora mis cálculos usando los datos de mi colegio y de un colegio de Melilla
Colegio Base:
Distancia al paralelo 40N: 56,5
Grado de inclinación con el sol: 51,1
IES Enrique Nieto (Melilla)
Distancia al 40N: -523,0
Grado de inclinación con el sol: 56,0
Aplicando el método de Eratostenes:
523-56,5=466,5km
56-51,1=4,9º
360º/4,9º=73,47
73,47*466,5=34273,75
(34273,75/2)*pi(3,14)=53809,8
miércoles, 6 de mayo de 2009
PRÁCTICA 9: LEYES DE NEWTON
Los elementos que hemos necesitado para realizar la práctica han sido los siguientes:
-Un coche de plástico (la imagen no se corresponde con el modelo de coche que usamos) al cual se podía atar un globo para convertirlo en un coche a reacción
-Un globo
-Nuestra capacidad de observación analítica para discernir y determinar qué leyes de Newton actuaban en cada momento.
Primera ley de Newton: el principio de la inercia.
Si un cuerpo se encuentra en estado de reposo o de movimiento rectilíneo uniforme, lo que quiere decir que ninguna fuerza está actuando en o sobre él, ese cuerpo permanecerá en dicho estado mientras que siga sin actuar sobre o en él ninguna fuerza. Esto significa que mientras la resultante de un cuerpo sea igual a 0, el cuerpo no cambiará de estado y continuará "haciendo lo que hacía"; para decirlo de forma más coloquial, menos científica, podríamos decir que "si no lo tocas, no cambia", queriendo significar por tocar "ejercer una fuerza sobre el cuerpo". Aun así, la verdad es que no hay ningún cuerpo que haya comenzado su existencia ya estando en un estado de movimiento rectilíneo uniforme, pero podemos ejemplificar esta ley con el único lugar en el que se puede comprobar realmente la inercia por falta de rozamiento (ya que el rozamiento es una fuerza)-- el espacio. Un objeto en reposo en el espacio no se moverá jamás si no se le aplica una fuerza, y si impulsamos con una velocidad inicial un objeto en el espacio, no se detendrá si no es por acción de una fuerza.
Segunda ley de Newton: El principio fundamental de la dinámica.
Esta ley de Newton y la primera son leyes que se contradicen. Si la primera establece las condiciones para lo que sucede cuando la resultante es 0, ésta las establece para cuando hay una resultante distinta a 0 actuando sobre el cuerpo. Se crea una aceleración directamente proporcional a la masa de este cuerpo, es decir: F = m·a, o Fuerza es igual a Masa por Aceleración. De esta forma, cuanta más fuerza le sea aplicada a un cuerpo, mayor será la aceleración que éste obtenga.
Tercera ley de Newton: El principio de Acción y Reacción.
Esta ley no se halla excluida de las condiciones en las que se encuentran las otras dos. Especifica una reacción a cada fuerza ejercida, y esta fuerza de reacción es igual en módulo a la fuerza de acción ejercida por un cuerpo. Sin embargo, aunque su módulo y dirección son iguales, cambia el sentido de la fuerza de reacción, tal que: F12=-F21, donde 12 indica que proviene del cuerpo 1 y se aplica al cuerpo 2, y 21 indica lo contrario. Estas fuerzas actúan de manera simultánea, y nuestra percepción de este principio muchas veces es errónea. Si golpeamos una pared con la fuerza suficiente, es posible que consigamos hacer una grieta en la pared, pero también que nos fracturemos los nudillos; esto se debe a que la pared replica a la fuerza que ejercemos con nuestro golpe inmediatamente, causando la misma fuerza en el sentido contrario, hacia nuestra mano. Este principio es el motivo de que un arma de fuego produzca retroceso al ser disparada: no se puede disparar con una pistola, por ejemplo, sin saber posicionar el brazo , las piernas y el cuerpo entero para minimizar los efectos de la reacción que produce la fuerza del disparo.
Las superficies influyen en el frenado dependiendo de como sea, todas influyen., pero según el material que sea o lo liso que esté o si hay obstáculos tarda más o menos en frenar. Si es una superficie pedregosa tardará menos en frenar que si es una superficie totalmente lisa y sin ningún tipo de obstáculos.
martes, 21 de abril de 2009
Práctica 7: La Tirolina
PRÁCTICA 7 - LA TIROLINA
- lubricante (en el caso de que no deslicen bien)
- metro
Lo primero de todo fue construir la tirolina y tomar las medidas de las distancias que las distancias que las tuercas debían recorrer. Después de esto todo fue tomar tiempos.
Aquí está la tabla que realizamos con las medidas tomadas en la práctica.
Cuestiones:
1. Esto se debe a que ya sabemos que este movimiento es un MRUA, es decir, que se mueve a lo largo de una línea recta y que su aceleración es un vector constante; así pues, si lo representamos gráficamente velocidad-tiempo tendremos una recta. Sin embargo, la velocidad cambia de manera proporcional, así que en un mismo intervalo temporal la velocidad aumente de igual forma: es decir, una recta.
2.como ya hemos realizada la práctica con dos tuercas de diferente tamaño y peso podemos decir con certeza que, teniendo en cuenta que la diferencia no era muy muy grande, la diferencia de velocidad y de tiempo en alcanzar las mismas posiciones son muy pequeñas, imaginamos que cuanto mayor sea la diferencia de peso y tamaño mayor será la diferencia de velocidades y tiempos.
3. si se utilizan otras inclinaciones para el hilo puede ir más o menos deprisa. cuanto más inclinada esté más rápido irá, por lo tanto cuanto menos inclinación tenga, es decir, cuanto más horizontal esté más despacio descendera. por lo que alcanzará velocidades menores.
4. si el hilo hubiese estado vertical hubiera sido una caída libre, ya que se deja caer la tuerca sin dar ninguna velocidad inicial. como si desde lo alto de un edificio dejas caer una bola de papel.
5. para que la tuerca descienda por el hilo es necesario que esté tenso, por lo que sí el movimiento seguirá siendo acelerado y uniforme la duda estaría en si sin estar tenso el hilo el movimiento seguiría siendo el mismo. Creemos que no, ya que habría "obstaculos" (cuando un hilo no esta tenso se forman como pequeñas arruguitas) que le frenarían aunque como no lo hemos comprobado no podemos asegurar nada digamos que esto es tan solo una hipótesis.
domingo, 8 de marzo de 2009
PRÁCTICA: Un Paseo Por El Cole.
Esta práctica fue la primera que hicimos cuyo tema fue la física. Todas las anteriores estaban relacionadas con la química; sin embargo, ésta tiene una base muy sencilla, en la que lo único necesario para tomar datos y poder experimentar con ellos eran nuestras propias piernas y un lápiz y papel para anotar.
Antes de la clase que empleamos en hacer esta práctica, nuestros conocimientos de física estaban limitados a lo que podíamos recordar de años anteriores, ya que era la primera clase de física propiamente dicha que tuvimos este curso. Cada uno tenía su propio conocimiento en cuanto a la física, dependiendo de si recordaba más o menos de otros años, e ignorábamos la mayoría de las cosas que van a ser explicadas y descritas en este trabajo.
Nuestro objetivo era, mediante una práctica muy fácil, iniciarnos en la física y acostumbrarnos a manejar magnitudes en forma de vector y a manipular dichos vectores.
RESUMEN
En primer lugar, al llegar al laboratorio, hicimos un pequeño experimento para definir qué era la paralaje; debíamos taparnos un ojo y apuntar con la mano opuesta a un objeto, cambiar de ojo y observar la diferencia producida por el cambio de sistema de referencia utilizado.
Después Ángel nos daría una breve introducción a los temas que debíamos tratar en la práctica, así como las instrucciones para realizarla correctamente. Más tarde bajaríamos al polideportivo y, cada uno con la medida de sus propios pasos, mediríamos la longitud de distintos segmentos que forman la cancha de baloncesto.
Gracias a esta práctica, lograremos entender qué son y en qué se diferencian la trayectoria, el desplazamiento, la posición y la distancia.
TRABAJO EXPERIMENTAL
En esta imagen podemos ver una representación de la cancha de baloncesto que tuvimos que medir. Los puntos en color negro son los puntos, propiamente dichos, que usaremos para medir. Desde el punto "A" tomamos nuestro sistema de referencia, considerando "A" como (0,0). Las líneas en rojo indican la longitud de los segmentos medidos en pasos.
El experimento consistía en medir la distancia de A a B, de B a C, de C a D, de D a la esquina superior derecha y a E, y de E a A. Las medidas tomadas, sin embargo, distan bastante de ser exactas, ya que han sido recogidas en pasos y no es sencillo dar pasos completamente idénticos. Por tanto, siempre habrá un margen de error considerable.
CUESTIONES
1.
El proceso que seguimos durante la práctica ya ha sido descrito con anterioridad.
Sistema de Referencia: Conjunto de coordenadas espacio-tiempo que se requieren para situar un objeto y para medir el movimiento de los cuerpos.
Trayectoria: Conjunto de todas las posiciones por las que pasa un objeto en movimiento.
Desplazamiento: Vector que une la posición inicial de un cuerpo con su posición final.
Posición: Punto del espacio físico a partir del cual es posible saber dónde se halla un objeto en un instante dado, medido desde el origen de coordenadas de un sistema de referencia particular.
Distancia: Relación de lejanía entre dos cuerpos. Número de una medida sobre la trayectoria.
2.
El punto A, que se halla en la posición (0,0) es el origen de coordenadas. El punto B se encuentra en (0, 18). El punto C está en (-29, -18). D se halla en (29, -18). E está en (0, -3).
El vector desplazamiento para ir de un punto a otro aparece en rojo. En azul, la trayectoria que hemos seguido para llegar hasta dicho punto.
3.
En la tabla no coinciden la distancia con el desplazamiento porque sólo coincidirían si ambos hubieran sido realizados en una línea recta.
4.
Estas tablas corresponden, respectivamente, a los resultados obtenidos al tomar como sistema de referencia los puntos B, C y D.
martes, 24 de febrero de 2009
PRÁCTICA 6: Movimiento Rectilíneo Uniforme
- una especie de regleta.
- un soporte
- plastilina
- un metro
- un cronómetro
- una bola grande de acero
- una bola pequeña de acero
La regleta la usamos para darle una misma velocidad inicial a las bolas, el soporte para mentener una misma inclinación todo el tiempo, la plastilina para fijar la regleta al soporte y la mesa también para marcar las distintas medidas que deben recorrer las bolas, el metro para medir las distancias a recorrer, el cronómetro para tomar los tiempos y por último las bolas de acero que hacen las veces de móvil.
Con cada bola tomamos unos tres tiempos de cada una en las distintas medidad, pusimos cuatro medidas distintas: 1,20m;1m; 0,50m y 0,30m. Después hallamos el tiempo medio en cada una de las distancias y la velocidad media a la que iba el móvil.
LOS RESULTADOS OBTENIDOS:
Estos los vamos a presentar en una tabla de datos y en una gráfica, la cual será comentada posteriormente.
Estas son las tablas de datos que tomamos para los experimentos con la bola grande y la bola pequeña, respectivamente. Aparecen en los mismos colores que la representación de dichos datos en la gráfica.
Aquí está la gráfica, en la que aparece el tiempo medio que tardó cada bola en recorrer 0,3, 0,5, 1 y 1,2 metros.
La pendiente de las gráficas coincide con la velocidad media para cada punto, si se toma desde dicho punto y el origen de coordenadas; coincide con la velocidad media para el recorrido entero, si se obtiene de medirlo en la propia recta (sin tener en cuenta las desviaciones que cada punto posea).
Hay una ligera desviación entre ambas líneas, debida a errores de medición, al rozamiento o a otros problemas. Sin embargo, podemos considerar que esta desviación es despreciable, ya que se debe a la ralentización de la bola por el rozamiento contra la mesa y a pequeños errores a la hora de tomar las medidas, así que se podría decir que la masa del objeto en movimiento no afecta a la velocidad que obtiene (ya que las masas de una y otra bola eran muy diferentes).
La gráfica representa un movimiento, si bien con pequeñas irregularidades, que podría describirse como Rectilíneo y Uniforme (siempre que se ignoren las desviaciones, claro está). El rozamiento es el causante de gran parte de estas irregularidades, haciendo que el móvil pierda velocidad a medida que avanza camino.
Luego nuestro profesor nos preguntó que le ocurriría a la gráfica en el caso de que la distancia recorrida fuese muy grande. Bien pues a esto contestamos que necesitaría muchos más segundos para recorrerla, aumentaría el tiempo necesario; el rozamiento producido por la superficie se incrementaría también, por lo que eventualmente la bola de acero terminaría por detenerse.
Posteriormente, nos pidió que elaborÁramos una hipótesis sobre la inercia según lo que hemos observado en esta práctica. Y aquí esta nuestra hipótesis: Un móvil no puede mantener una velocidad constante, y se frena cuando ha pasado un tiempo de su cambio de reposo a movimiento, solo se dan los casos en los que se lleva una velocidad constante en un lugar dende no haya rozamiento. Un ejemplo a nuestro alcance y más cercano que el espacio, en el de un coche que circula a una velocidad constante por una carretera llana y recta, de este modo es un movimiento rectilíneo y uniforme ya que lucha contra el rozamiento y no se frena a no ser que deje de pisar el acelerador.
martes, 10 de febrero de 2009
Práctica 5: Un paseo por el cole
Poneros algo lejos de la pantalla del ordenador y con el pulgar de la mano izquierda tapar uno de los puntos, giñar el ojo derecho y vereis lo que pasa... repetirlo con la mano derecha y el ojo izquierdo. No sucede lo mismo ¿Verdad? Después de esto nos explicó en que consistia la práctica, en cuanto todo estuvo preparado bajamos al polideportivo a contar pasos segun este esquema que os puesto para que no os pesdais detalle:
En la imagen estan puestas las medias que tomamos contando pasos iguales, o por lo menos intentando que lo fueran. Las lineas rojan indican la trayectoria que seguimos para contar los pasos, los vectores de ovimiento son otros, van de A a B, de B a C, de C a D, de D a E, y de E de vuelta a A, todo directamente sin rodear el campo.
CONCLUSIONES
Esta práctica nos ha ayudado ha distinguir entre unos conceptos muy básicos de la fisica, como es el desplazamiento, la trayectoria, la distancia, etc. Más adelante veremos la definición de estos conceptos.
CUESTIONES
1. Trayectoria: Son todos los lugares por los que pasa un móvil.
Sistema de referencia: conjunto de de puntos que se usan para medir magnitudes físicas. Los puntos cardinales son usados en un mapa para localizar los lugares. Por tanto es un sistema de referencia.
Desplazamiento: Es lo que se ha movido un móvil, es decir el vector resultante de la posición final menos la inicial.
Posición: punto en el que se encuentra un objeto en un momento determinado.
Distancia: Mide la lejanía entre dos cuerpos.
Espero que con estas definiciones todo quede mucho más claro...
2. Ya dibujé un grafico con todos los puntos que seguimos desde el sistema de referencia que es el punto A ( el cretro del campo).
3. Solo coincide el desplazamiento con la distancia recorrida en los puntos de: de A a B y de C a D.
BLIBLIOGRAFIA
Me he ayudado un poco con wikipedia y con las imagenes, que lo hace todo un poco más faciel de explicar.
Esta práctica la ha realizado Cristina Morillas.
domingo, 18 de enero de 2009
PRÁCTICA ESTEQUIOMETRÍA DE UNA NEUTRALIZACIÓN
Para esta práctica hemos necesitado:
· Bureta
· Vaso de precipitados
· Embudo
· Agitador
· Probeta
· Balanza (digital)
· Papel indicador de pH
· Fenolftaleína (líquido que se usa para teñir los líquidos, se usa para medir el pH, en presencia de bases se pone de color rosado)
· Hidróxido sódico (sosa)
· Ácido clorhídrico.
Para esta práctica, nuestro profesor nos recomendó el uso de batas y guantes de látex, porque íbamos a trabajar con productos tóxicos y con ácidos.
Lo primero que hicimos fue, por supuesto, preparar todo el material. Después de esto, pesamos dos perlas de sosa en un vidrio de reloj en la balanza digital (primero se pesa el vidrio de reloj y luego se pesa todo junto, a esta última medición se le resta el peso del vidrio de reloj y ya tienes el peso de la sosa), hicimos lo mismo con el hidróxido cálcico. La sosa pesaba unos 0,4g y el Ca(OH)2 0,9g. Después medimos 100cc de agua con una bureta y los vertimos a un vaso de precipitados, en ese vaso hicimos una disolución de sosa, al mismo tiempo hicimos otra disolución con 100cc de agua y el Ca(OH)2 .
Antes de verter el HCl medimos su pH y era algo alcalino. Una vez hecha la disolución, con la bureta hicimos verter por goteo ácido clorhídrico, tanto en la de sosa como en la de hidróxido cálcico. Mientras las gotas de HCl caían al vaso de precipitados con la disolución de sosa removíamos con un agitador pasado un tiempo (dependiendo de la velocidad a la que iba el goteo), en las disoluciones desapareció el color rosado de la fenolftaleína, medimos el pH y salía prácticamente neutro. Pasados unos cuantos minutos el color rosado vuelve.
CUESTIONES
1- NaOH+ HCl--> NaCl + H2O (ya está ajustada)
Ca(OH)2 + HCl--> CaCl2 + H2O ====(Ajustada) Ca(OH)2 + 2 HClà CaCl2 + 2 H2O
2- Son reacciones de neutralización, en este tipo de reacciones siempre se obtiene una sal más agua. Además al medir el pH después de la reacción hemos visto que es neutro.
3- Molaridad de las disoluciones:
· 1ª NaOH+ HCl--> NaCl + H2O M= 0,02mol/0,1l=0,2mol/l
· 2ª Ca(OH)2 + 2 HCl--> CaCl2 + 2 H2O M=0,023mol/0,1l=0,23mol/l
4- Molaridad de HCl:
· 1ª M=0,36mol HCl/ 0,1l=3,6mol/l
· 2ª M=0,828molHCl/0,1l=8,28mol/l
(100cc=0,1l)